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Abstrac t  

The t ime-dependent  rotat ional  t ransformat ion,  which is a special case of  the time- 
dependent  linear t ransformat ion  o f  coordinates in Newtonian  mechanics,  is considered 
rigorously f rom the  point  of  view of  infinitesimal t ransformat ion.  By this approach 
the  s tandard techniques  in differential geometry  can be naturally in t roduced to 
classical dynamics .  The  relation be tween rotat ional  reference f rames and E. Cartan 's  
Euclidean connect ion is obtained.  It is suggested tha t  the  ex tens ion  o f  the  present  
theory  to the  ( t ime-dependent)  general linear t ransformat ion  is possible by using 
the bundle  L(M) of  linear f rames over a manifold M. 

1. In troduct ion  
_ t t t 

Let x -= (Xl, x2, x3) and x ' =  (xt, x2, x3)be the coordinates of the position 
of an identical particle observed by the two observers S and S', respectively, 
who are in an arbitrary relative motion in a three-dimensional Euclidean 
space. We regard time t as an absolute (invariant) parameter. Then the 
transformation x -~x can be represented as follows: 

x -~x '  = x .  a ( t )  + a(t) (1.1) 

where 

A ( t )  =- [aij(t)], a(t) =- (al(t), ax(t ), a3(t)) 
and 

detlaij(t)t = 1, rA(t)  = A - l ( t )  for all t (1.2) 

If we fix time t in these equations, the set of these transformations forms the 
so-called group of motions, which is the fundamental group of Euclidean 
geometry in F. Klein's viewpoint (Yano, 1968). In this connection we have 
formally discussed from the viewpoint of a finite transformation the time- 
dependent transformation (1.1) in the framework of Newtonian mechanics 
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excluding the restriction of the inertial frame (Ohkuro, t976); in this dis- 
cussion two formal assumptions have been made, viz. the "vectorial property 
of  transformation," 

d2x d2x "A(t), F-+ F ' A ( t )  (1.3) 
m dr-- 5 -+ m dt---- 2 

and the "covariance," 

of Newton's equation of motion, 

d 2x ' 
- F r m ~ - (1.4) 

d2x 
m ~ 5  = F (1.5) 

under the transformation (1.1). Here m and F represent mass and force, 
respectively. In this way we have pointed out the importance of the time- 
dependent transformation (1,1) in connection with the problem of the 
accelerated frames. However, the assumption (1.3) is irrelevant, which can 
be easily seen by differentiation of equation (1.1). Therefore we need the 
more rigorous mathematical treatment of the transformation (1.1). 

In this paper we consider the transformation (1.1) only for the case 
a(t) = 0 from the viewpoint of an infinitesimal transformation: 

x -*x '  = x ' A ( t )  
where 

detb4(t)J = t and tA(t) = A-l(t) for all t (1.6) 

This transformation corresponds to that to the rotational frame. 

2. Acceleration as a Tensor 

For the linear transformation (t.6), we can give its rigorous treatment as 
shown in this and the subsequent sections. 

Let dP be the infinitesimal displacement of  the position P of a particle in 
a three-dimensional Euclidean space E a between the time t and t + dt. (We 
use the symbol d, instead of d, for the expression of an infinitesimal vector. 
We use the symbol d for the exterior differentiation.) The identical quantity 
ctP may be represented by two observers S and S', who are in a relative rota- 
tional motion, at time t as follows: 

dP = dx" e = dx' "e' (2.1) 
where 

dx =- (dx 1, dx2, dx3), e --= t(el, e2, e3) 

and the equations of the same forms for dx'  and e', respectively. Here e and e' 
are the bases of the two orthonormal Cartesian coordinate systems. Equation 
(2.1) is the approximate expression (within the first order with respect to 
infinitesimal quantity) of the infinitesimal displacement dP(t) of a moving 
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point P(t) between time t and t + dG i.e., P(t + dr) - P(t) ~ {P(t) + dP(t)} - 
P(t)  = dP(t) -= dP, in terms of  the bases at time t: e ~- e(t) and e' - e'(t). Next 
we specify the infinitesimal change of  the bases, de -~ de(t) ~ e(t + dr) - e(t) 
and de'  -- de'(t) ~, e '( t  +d t )  - e'(t) by the equations 

de = ~2- e and de'  = f2'-  e' (2.2) 

where the antisymmetric matrices ~2 and f2' of  differential forms of  degree 1 
are given as follows: 

a = dT(t) = ~ ) d t  
a [  

and (2.3) 
dT'( t )dt  

~2' = dT'(t) = T 

where T(t) and T'(t) are given by 

e(t) = T(t) "e(t = O) 

and (2.4) 

e ' (0  = T'(t)  -e'(t = 0) 

Here the time-dependent matrices T(0  and T'(t) satisfy" the condition for A(t )  
of  the same form as equation (1.2). The equations (2.1)-(2.4) are the funda- 
mental tools of  our infinitesimal approach. 

From these equations we can calculate the "infinitesimal displacement" of  
the velocity vector dP/dt as follows: 

d ~- =d ~-7"e -~ -e+~-~'de 

[d2x dx~. dtgZ) = ~ - ~  + "edt (2.5) 

and on the other hand we have 

t --¢te '  d dP =d  - ~ ' e '  = + -dt ( 2 . 6 )  
\ d? dt dt J 

According to the condition for the observers S and S'  given at the end of  
Section 1, we have the relation for e and e' as follows: 

e' = A ( t ) ' e  (2.7) 

where A(t )  is the one given by equation (1.6). Using this equation we have 
following equations: 

dP = dx " e = dx " e' = dx' "A(t) " e 

dx' dip dx dx' e' "A(t) e _ _ =  _ _ . e = _ _ .  = 
dt dt dt - ~  
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and 
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\ tj 17+57 
[d2x ' dx' ~') 

= 1 7 + - d 7 " ~  "e'clt 

[d2x  ' dx' "A(t)" edt 
=IF  + 7 

from which we have the following equations, which show the tensorial 
character, for the transformation (2.7), of  the corresponding quantities: 

'(dx') = A" '(dx) 

\ at ] kat ] 
and 

) d r 2  + = A " - - "  at d7 dt 
(2.8) 

From the last one of  equations (2.8) we obtain the definition o f  acceleration 
as a tensor under the transformation (1.6): We define an acceleration tensor 
by the coefficient of  covarient differentiation of  the velocity tensor dx/dt. 
If  ~2 is independent o f  t, then our acceleration reduces to the usual one, 
d2x/dt 2. This is the case for the fixed frame in Newtonian mechanics, 
because T(t) is independent of  t in equation (2.4) in this case. 

3. Generalization to Non-Euclidean Space 

In the previous section, (1) we have defined the "connection" of  a Euclidean 
space (or an orthonormal Cartesian frame) with respect to the time-variable t, 
i.e., equations (2.1)-(2.4). Furthermore, (2) we have defined an acceleration- 
tensor for the rotational frame in a Euclidean space. In this section we consider 
the possibilities of  modification and generalization o f  these two conditions, 
respectively, which will enable us to introduce the standard technique in 
differential geometry, i.e., the concept o f  fiber bundle of a differentiabte 
manifold, to our present problem. 

In the previous section we have represented the difference de(0 ~ e(t + dt) 
- e(t) of  the basis vector between time t and t +dt  by the basis vector e(t) 
at time t, i.e., equation (2.2). We can apply the same technique for the 
coordinates x instead of  time t, because we are not considering such a 
problem as a stocastic motion in the present paper, and because we are 
considering such a motion that the position x(t  +dt) of  a particle at time 
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t + dt is uniquely and smoothly determined by that x(t) at time t. Therefore 
we can regard e(t + dt) as e(x + dx), 

e(t + dr)  - ,  e(x + dx)  : e(x + dx)  - e Ix(t) + ax( t ) ]  

e[x( t  + dO] = e(t + dr) 
where 

and 
x ( t ) : t  ~ x  (unique and smooth) (3.1) 

x + dx  = x ( t )  + dx( t )  -~ x ( t  + dt)  

The same modification applies also to the infinitesimal vector dP given by 
equation (2.1). Thus we obtain the "connect ion" o f  an orthonormal Cartesian 
frame along the path x(t) of a particle regarding the time t as an implicit 
parameter. Hereafter we mean this modified sense when we refer to equations 
(2.1)-(2.4) as "connection" of  a Euclidean space. 

In the previous section we obtained acceleration as a tensor under the 
transformation of equation (1.6). The discussion given there can also be 
applied to the Euclidean tangent space. In fact if we require the tensorial 
character only of  the acceleration, then the base space given by coordinates 
x need not be a Euclidean space. It is sufficient if its tangent space is a 
Euclidean space. Therefore we regard the discussion given in Section 2 as 
the one in the Euclidean tangent space, which has a rotational group as 
its fundamental group, o f  a general (differentiable) base manifold. Then 
the orthonormal Cartesian frames e and e' are interpreted as the local 
frames in the fiber on a point x in the base manifold. 

From these considerations we arrive at the following conceptions: Let 
x be the coordinates of  the three-dimensional differentiable base manifold 

M 3. Along the path x(t) of a particle, where x(t) is a unique and smooth 
function of  time t, Euclidean tangent spaces (E3(x(t))[a < t < b} are 
assigned, and the relation between E3(x) and E3(x + dx) along the path is 
given by the "connect ion" (2.1)-(2.4). 

Thus the rotational motion of  a particle in a Euclidean space can rigorously 
be treated using the fiber, whose fundamental group is rotation, along the 
path x(t) in the base differentiable manifold M3: The position o f  a particle 
can be regarded as a point in the manifold M 3, and the observers and the 
group of  the transformation between them can be regarded as the frames in 
the fiber and its structure group, respectively. It is to be noted that even if 
we start with a Euclidean space, it is necessary to introduce the manifold, 
which is generally not a Euclidean space, when we discuss the motion in it 
(the Euclidean space) eliminating the transformations between observers, i.e., 
in a covariant fashion. 

4. Euclidean Connection 

In the preceding section the fiber "along the path x(t) in M 3 was introduced. 
We embed this fiber into the usual fiber bundle over M 3 with the rotational 
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group as its structure group. Thus we are led to investigate the fiber bundle 
itself, where the bundle space is obtained by moving the point P over M 3 
from the set Fp of the system of all positive orthonormal vectors in the 
tangent space at a point P. In this section we investigate the same problem 
from the classical viewpoint of  E. Cartan, i.e., the Euclidean connection in a 
differentiable manifold. [Nowadays E. Cartan's Euclidean connection is 
called a metric connection of Riemannian manifold (Kobayashi and Nomizu, 
1963).] We proceed according to Yano (1968). First let (x 1, x 2, x 3) be the 
coordinates of a point of a general three-dimensional space M 3. Next we 
suppose that the tangent space at each point P o f M  3 is the space with the 
group of motions as its structure group, that is, a Euclidean space in Klein's 
sense. We assign linearly independent three tangent vectors A](x), ] = 1, 2, 3 to 
each pointP(x),x EM, of M 3. [A](x),j = 1,2, 3 need not be an orthogonal 
system.] Then the point P(x + dx) ~ P +dP in the neighborhood of the 
point P(x) is expected to be described in the form 

3 
P+dP=P+ E colA] (4.1) 

]=1 

because the point P(x + dx) can be regarded as the point in the tangent space. 
at the point P(x). Here col are Pfaffian forms depending on the coordinates x ~. 
co i satisfy the equation of the following form: 

3 
co i= X pi iaxi (4.2) 

i=1 

where p~. are differentiable functions ofx .  Thus we have the expression for 
the infinitesimal vector dP 

3 
dP= Z wlAj (4.3) 

j = l  

We have the equations 

dp=N(Ep~dxilAj=E(~ip]iAj)dxi=Z, Aidxi (4.4) 
j \ i  ] i " i 

where we write ~jpLAj as  A i again. 
When we put this tangent Euclidean space at the point P + dP upon the 

other tangent Euclidean space at the point P, we must assign the positions 
which the vectors A] + dAj in the tangent space at the point P + dP take in 
the other tangent space at the point P; we must assign the vectors Aj + dAj 
using the tangent vectors Aj. (Here it should be noted that we are not 
assuming the orthogonality, but assuming the linear independence of 
vectors Aj in the tangent Euclidean space.) This can be done by the 
equation 3 

AI + dAj = AI + i~, co/Ai (4.5) 

i.e., 3 
dA i = ~ coiiAi (4.6) 

i=1 
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where the quantity COl l is a Pfaffian form depending on the coordinates x,  
and we define the connection coefficients P}k by the equation 

3 

co l= k~=l r]kdX k (4.7) 

Finally the Euclidean connection of our space is represented by the following 
formulas: 

dP = A idx i (4.8) 

and 

dAj  = P jkdxaAi  (4.9) 

where both  here and hereafter repeated indices are summed over. The 
Euclidean connection of our space M a is determined by. assignment of  33 = 27 
functions P]k. Generally P/k is not symmetric: P]k ~ PAl" 

Let us consider the transformation of  coordinates 

x -+2 (4.10) 
The above formulas can be written in the coordinates 2 as follows: 

dP= A id~  i (4.11) 

and 

dAj  = P]kd2kdi  (4.12) 

In the former the infinitesimal vector dP is equal to the other infinitesimal 
vector dP, 

dP = d/3 (4.13) 

because the point P is invariant for the transformation of coordinates 

P =  fi  (4.14) 

Therefore from equations (4.8) and (4.11) we have 

Ox a 
f l  i = -~xi A a (4.15) 

which shows that A i  are the components  of  a covariant vector. We have the 
equations, using equation (4.15), 

dAj = d = \~271 a dAa 

32xa 3x a 
= ofgjo~ ~ d"~kAa + 3ycj--. dA a 

02xa 3xa i 3X b 
= O~]oy:k" dXkAa + 02 j -  • PabAi 32 k -  • d2 k (4.16) 
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where in the last equality we have used equation (4.9). On the other hand 
from equations (4.12) and (4.15) we have the equations 

~i - - k 7  _ ~,i ~xa A d-k d A / = l j k a x A i - l ] k  ~xi a x (4.17) 

From equations (4.16) and (4.17) we have 

~2Xa Oxb axC a - i  ~Xa 
a£/a2----~ + ~x I ~x k rbe = Pjl~ a2i (4.18) 

which gives the transformation rule of the connection coefficient for the 
transformation of coordinates. (See also Yano, 1968). 

The torsion form r and curvature form ® are introduced according to 
Flanders (1963) as follows: 

d2p =d(dP) = d(Aidx i) = dA i • dxi + Aid2x i 

= da i "dx i= co~A/" dx i= P[kdxkdxiA/ 

- flA/= r "A (4.19) 

where 

r - (r 1, r 2, r 3) and A =- t(A 1, A2,A3)  (4.20) 

The torsion coefficient T% is defined by the equation 

r i = ~ Vi]kdxidx Ic, TS"k = -T'g7 (4.21) 

Therefore we have the equation 

• i T'k/= P]k - r~i (4.22) 

On the other hand we have the equation 

d2Ai = d(dAi) = d(co/A/) = dcoi/'Ai- co/dA/ 
= dcoi / " A / -  coiJco/k "Ak = (dcoi / -  coikCok J) "A] 

=-Oi/ "A/= ® "A (4.23) 

where 

Thus we have the equation 

where 

0 - (oi:) 

® =dco - co2 (4.24) 

co - ( c o / )  

The curvature tensor RiJkl is defined by the equation 

Oi j = ½RiJkldxkdx l, RiJkl = -RiJlk (4.25) 
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In equations (4.19)-(4.25) products of  differential forms represent the 
exterior products.  From equation (4.23) we have the equation 

" ~P[I ~F[I¢. m j m ] (4.26) Riltcl = 3x-- ~ ~x 1 "~ Pil Prnlc - Pile Prnl 

It is well known that the space with Euclidean connection is a generaliza- 
t ion of  Riemannian space in the sense that  in the former torsion form is 
generally not  zero whereas in the latter it is usually set identically equal to  
zero: Riemannian geometry is based on the torsionless connection, tn the 
space with Euclidean connection the base manifold M 3 can be locally approxi- 
mated by the tangent Eucl idean  space whose basis is given by  the set of  
tineafly independent  covariant vectors (A1, A2, A 3). t Therefore we can 
consider the length ds of  the infinitesimal vector d P =  Aidxi:  

ds 2 = dP " dP  = (A /  . d x / ) ( A k  " d x  ~) 

= A : "  A k d x Y d x  k (4.27) 

where the product  d x f d x  k is not  the exterior product .  Thus we have 

dsZ = gjk d x l d x k  (4.28) 

where 

gjk = A / .  Ak ,  gjk = gki (4.29) 

Equation (4.28) shows that  our space is a Riemannian space. (Only our choice 
of  connection is different from the case in conventional Riemannian geometry.) 
Differentiating equation (4.29) we have the equations 

(d,4j) "Ak + A] " (d / tk )  = dgjk 

and 

( r ~ d x h A a )  . &  + A i • ( r G d x ~ & )  = dgik 

Therefore because of  the arbitrariness of  d x  jz we have 

3~ (4.30) r~h gale + P~hg]a = -OX h 

which is the condit ion to be satisfied by the functions P~k in order that the 
given connection I '~  be nothing but a Euclidean connection (Yano, 1968). 
Nowadays a connection satisfying equation (4.30) is called a metric connection 

i i 
o f  a Reimannian space. In particular,  Christoffel 's symbol {/k} = {k]}, i.e., torsion- 

A i need not be "'orthonormal" here. On this point Euclidean connection can be 
regarded as a preliminary step to a linear connection in the principal fiber bundle 
L(M) of linear frames over M, which corresponds to the generalization of equation 
(1.6) such that A(t)  is an element of the general linear transformation group GL(3; R) 
of dimension 3 for any fixed t. In particular Euclidean connection is a connection in 
O(M), i.e., the principal fiber bundle of orthonormal frames over M (Kobayashi and 
Nomizu, 1963). See also Section 5. 
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less connection, satisfies equation (4,30), as is well known, and therefore 
is one of the solutions of equation (4.30). However, the values of I']k 

satisfying equation (4.30) exist innumerably besides (}k} (Yano, 1968), 
where we have 

1 ia[~gaj+Ogak Ogik] 
(}k} = (kj} = gg ~ X  k OX ] -- ~X a ] 

and 

(4.31) 

• fo ,  for i ~ /  
g g j-- = / 1, for i -- ] 

(4.32) 

5. Discussion and Conclusion 

Even if we restrict ourselves to the rotational motion of a particle in a 
Euclidean space, from the viewpoint of the transformation of coordinates 
the mathematically rigorous treatment is not so simple as the conventional 
discussion in classical dynamics. It is necessary to introduce the differentiable 
manifold M 3 with a tangent Euclidean space, i.e., the fiber bundle on M 3 
with the rotational group as its structure group, in order to discuss even the 
rotational motion in a Euclidean space. The position of  a particle can be 
regarded as a point in the base manifold A/3, and the observers and the group 
of transformation between them can be regarded as the frames in the fiber 
and its structure group, respectively. This corresponds to the principal fiber 
bundle 0(34) of orthonormal frames over M. 

In Section 4 we have given a brief explanation of the conception of 
Euclidean connection according to Yano. Euclidean (or metric) connection 
is the one that has the character between Riemannian connection (or Levi- 
Civita connection) and affine connection (or linear connection). It is to be 
noted that in the space with Euclidean connection we have the metric tensor 
gij as well as the torsion form; in Riemannian connection the torsion form 
is zero, and in affine connection we cannot define the concept of the length 
of a vector (therefore we cannot define the metric gij either) (Yano, 1968). 

In Riemannian geometry the Ricci tensor R]k, where 

Rjk - ~a Rfak (5.1) 

plays an important role. However, in the space with Euclidean connection 
the quantity corresponding to this contraction does not have any geometrical 
(or invariant) meaning for transformations of frames, as seen from equation 
(4.25). On the other hand the trace of the curvature from O, which is invari- 
ant under the transformation of frames, has the following form: 

Thus in our approach the quantity NiRiikz must have an important meaning 
instead of the "Ricci tensor" NaRjaak. In fact we can give the new definition 
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of  the gravitational field (different from Einstein's theory) in terms of  the 
quantity GiR/kl instead of  ~,aRjaak . Then we can obtain the right- 
hand side, the force term, of  our new equation of  motion using the 
quantity ZiRiikl, in which the acceleration tensor is given by equation (2.8). 
The detailed discussion of  these points wit1 be given in a separate paper, 
in which the results given in the present paper will be extensively used. 

It is to be noted that in Riemannian geometry we have the trivial result 

~ Riikl =-- 0 (5.3) 
i 

which is another reason that we must extend Riemannian geometry, or 
rather Riemannian connection, itself. Riemannian connection is a con- 
nection in the principal fiber bundle O(M) of orthonormal frames over 
M with a corresponding metric given by equations (4.28) and (4.29). In 
equation (4.29) the inner product A i "Ag of two tangent vectors A i and 
Ag means that of  two vectors in a Euclidean space. Equation (5.3) holds 
even in a Euclidean connection of  M, if we use the metric given by equations 
(4.28) and (4.29). The reason is as follows: The metric admits the choice 
of  orthonormal frames of  tangent space Tx(M) a t x  EM,  and therefore 
the curvature matrix ® - (O J)  becomes antisymmetric so that 

T r ® = 0  

To use equation (5.2) we must generalize the metric given by equations 
(4.28) and (4.29); this leads us to the concept of  the principal fiber bundle 
L(M) of  linear frames over M. This corresponds to an extension of  A(t) 
in equation (1.6) to GL(3; R). This subject will be discussed in a separate 
paper. 
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